

RCHD-PF Datasheet

Version 2.1

• 667 MHz RISC-V

- 4 compute cores
- 1 realtime supervisor core
- PolarFire FPGA up to 254K LUTs
- Tamper resistant
- LPDDR4 RAM memory
- GPIO and HSIO
- Up to 64 GB onboard eMMC
- WiFi and 1Gbit Ethernet PHY
- 256 Mbit NOR Flash for FPGA configuration
- 30% smaller than a credit card
- Libero® SoC PolarFire FPGA Toolset

Table of Contents:

- 1. List of tables
- 2. Revision history
- 3. Overview
- 4. Features of RCHD-PF
 - 4.1. RISC-V Microprocessor Subsystem Features
 - 4.2. FPGA Features
 - $\circ\,$ 4.3. Low-Power Features
 - 4.4. Reliability Features
 - 4.5. Security Features
 - 4.6. Software features
- 5. Block diagram
- 6. Main hardware components
 - 6.1. PolarFire SoC FPGA
 - ° 6.2. LPDDR4 RAM
 - ° 6.3. eMMC
 - ° 6.4. NOR Flash
 - ° 6.5. USB OTG PHY
 - 6.6. WiFi transceiver
 - ° 6.7. Ethernet PHY
 - ° 6.8. EEPROM
 - ° 6.9. Real-time clock
 - 6.10. Power supply section
- 7. External connectors
 - 7.1. Wi-Fi Antenna Connector
 - 7.2. Board-to-board Connectors
- 8. ElectricalSpecifications
 - 8.1. Absolute Maximum Ratings
 - 8.2. Recommended Operating Conditions
 - 8.3. Output Power Supplies
- 9. Environmental Specifications
- 10. SOM Dimensions
- 11. Boot process
 - 11.1. Intro
- 12. Ordering information

1. List of tables

SoM Board-to-Board Connector J1 SoM Board-to-Board Connector J2 SoM Board-to-Board Connector J3 SoM Board-to-Board Connector J4 Absolute maximum ratings Recommended operating conditions Output power supplies Environmental Specifications

2. Revision history

Table 2.1 Revision History

Revision	Date	Notes
1	Jan 04, 2020	Initial - Preliminary
2	Apr 26, 2022	Review and detailed update of all sections
3	Jun 13, 2024	Update ordering information

3. Overview

Fig. 3.1 RCHD-PF SOM module.

The Conclusive Engineering "Orchid" series RCHD-PF is a highly scalable System on Module. It carries a Microchip® PolarFire® System on Chip that contains a RISC-V CPU and an FPGA.

Orchid supports the full lineup of PolarFire® SoCs that use the FCVG 484 package. The RISC-V is a deterministic, coherent CPU cluster, composed of 5 cores - 4 general purpose cores, and a single supervisor core. It remains the same across the whole PolarFire® lineup, at around 2030 CoreMark performance at 667MHz. The FPGA can scale from 23K to 254K LUTs. The FPGA and the CPU use a shared, deterministic L2 memory subsystem.

Orchid is extremely power efficient. Its SoC is capable of delivering 6500 CoreMarks at 1.3W, and is up to 55% more efficient than closest comparable non-RISC-V solutions. It supports deterministic, asymmetric, hard real-time processing with memory coherence across the RISC-V cores and the FPGA. These applications can run either on bare metal, or alongside an operating system like Linux or FreeBSD. It is capable of dual 4K video processing.

Orchid is extremely secure. It can work in environments physically accessible by adversaries. It's secured against non-invasive data extraction by Differential Power Analysis, a patented technology

of Cryptography Research Incorporated. Its processor is fingerprinted using PUF, a Physically Unclonable Function. It changes its output on any tampering attempt that modifies the processor state.

Orchid's RISC-V CPU is a simple, 5-stage single issue in-order pipeline processor. It's resistant against Meltdown and Spectre types of exploits that are hard to mitigate on out-of-order CPUs.

Orchid's mainboard is 30% smaller than a credit card. It's typically delivered with a much larger evaluation daughterboard, the RCHD-PF-EVAL, which is also purchasable separately, and provides a breakout of Orchid's most important functionality to standardized connectors. We can provide custom daughterboards made to client's requirements, or customize Orchid itself.

Orchid's intended applications are:

- Imaging, Machine Vision, Smart Cameras (software & hardware control)
- Digital Signal Processing
- Endpoint Artificial Intelligence/Machine Learning (AI/ML)
- Internet of Things (IoT)
- Industrial Automation, Smart Factory, Advanced Sensor Fusion
- Automotive
- \cdot Aerospace and Defense
- Wireline Access Networks
- Cellular Infrastructure
- Virtual networks (software-programmable network infrastructure)

To learn more about the PolarFire SoC, please visit the PolarFire SoC FPGA offical page.

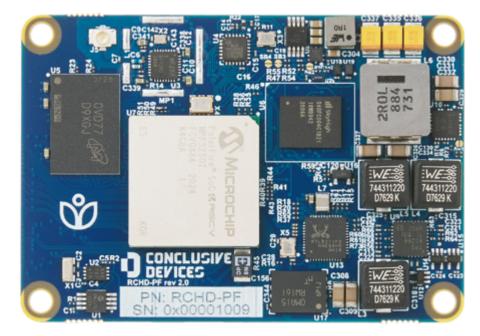


Fig. 3.2 RCHD-PF SOM module TOP wiev.

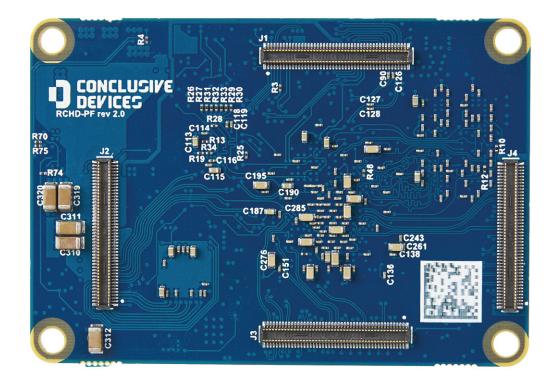


Fig. 3.3 RCHD-PF SOM module BOTOM view.

4. Features of RCHD-PF

4.1. RISC-V Microprocessor Subsystem Features

- 4x 64-bit RV64GC Application processing core:
 - $^{\circ}\,$ Fmax of 667 MHz (-40 °C to 100 °C Tj),
 - Benchmark performance: 3.0 CoreMarks®/MHz, 2.0 DMIPs/MHz:
 - L1 memory subsystem with single-error correct, double-error detect (SECDED)
 - 32 Kbytes 8-way instruction cache or optional 28 Kbyes tightly integrated memory
 - 32 Kbytes 8-way data cache
 - Memory Management Unit (MMU)
 - Physical Memory Protection (PMP) unit
- 1x 64-bit RV64IMAC monitor processor core: Fmax of 667 MHz (-40 °C to 100 °C Tj), 3.0 CoreMarks®/MHz, 2.0 DMIPs/MHz - L1 memory subsystem with SECDED - 16 Kbytes 2-way instruction cache - 8 Kbytes scratch pad memory - PMP unit
- Flexible 2 MB L2 memory subsystem with SECDED configurable as:
 - 16-way set associative L2 cache
 - Loosely Integrated Memory (LIM) mode for deterministic access
 - $\circ\,$ Coherent Scratchpad Memory mode for shared messages across cores
- Integrated 36-bit DDR4/DDR3/LPDDR4/LPDDR3 memory controller with SECDED
 - $\circ\,$ DDR4 at 1.6 Gbps with a 8 GB address reach
 - RCHD-PF implements up to 4 GB LPDDR4 in a single die, soldered on board, but custom variants are possible
- Cache coherent CPU bus matrix
- AMBA I/O switch with QoS and memory protection
- Integrated 128 Kbytes embedded non-volatile memory (eNVM) for boot

Boot options

- Microchip secure boot
- User defined, PUF-protected secure boot
- Boot directly from eNVM
- Platform interrupt controller
- 185 interrupt sources from the microprocessor subsystem and FPGA fabric with seven priority levels
- Local interrupt controller
 - $^\circ$ 48 local interrupts sourced from the FPGA drive the local interrupt controller on each core
- Debug
 - Ten hardware triggers per CPU (triggers can be configured as a breakpoint or a watchpoint)
 - Instruction trace on all CPUs
 - $\circ\,$ Performance counters
 - Runtime-configurable AXI bus monitors
 - $\,\circ\,$ Monitor AXI commands to DDR
 - $\,\circ\,$ Monitor an AXI port going into or out of the AMBA I/O AXI switch
 - 32-bit fabric monitor
 - SmartDebug
 - Dynamically monitor any two nets in the FPGA on two pins without changing the FPGA design
 - Read/write to FPGA flip-flops and memories
 - $\,\circ\,$ Halt clock trees, inspect logic tree
 - FPGA breakpoints
 - SmartDebug integrated into processor debug transport layer debug from a single tool chain
 - Secure debug remotely over Ethernet (both the processor subsystem and the FPGA design)
- Processor I/O:
 - Two GigE MACs,
 - ° An USB 2.0 OTG,
 - MMC 5.1 SD/SDIO,
 - $\,\circ\,$ Two CAN 2.0, A and B,
 - Execute in place Quad SPI flash controller,
 - Five multi-mode UARTs,
 - Two SPI, two I2C,
 - RTC, GPIO,
 - Five watchdog timers,
 - Timers.

- Processor to FPGA Interconnect
 - Two 64-bit AXI4 processor-to-fabric interfaces
 - $\circ\,$ Three 64-bit AXI4 fabric-to-processor interfaces
 - A 32-bit APB processor-to-fabric interface

4.2. FPGA Features

- Up to 254K logic elements consisting of a 4-input look-up table (LUT) with a fracturable D-type flip-flop
- 20 Kbytes dual- or two-port large static random access memory (LSRAM) block with built-in SECDED
- \cdot 64 × 12 two-port µRAM block implemented as an array of latches
- 18 × 18 math block with a pre-adder, a 48-bit accumulator, and an optional 16-deep × 18 coefficient ROM
- \cdot Built-in $\mu\text{PROM},$ modifiable at program time and readable at run time for user data storage
- High-speed serial connectivity with built-in, multi-gigabit, multi-protocol transceivers from 250 Mbps to 12.7 Gbps
- Integrated dual x4 PCIe Gen2 endpoint (EP) and root port (RP) designs
- High-speed I/O (HSIO) supporting up to 1600 Mbps DDR4, 1333 Mbps DDR3L, and 1333 Mbps LPDDR3/DDR3 memories with integrated I/O digital
- General-purpose I/O (GPIO) supporting 3.3 V, built-in CDR for serial gigabit Ethernet, 1067 Mbps DDR3, and 1250 Mbps LVDS I/O speed with integrated I/O digital logic
- Low-power, phase-locked loops (PLLs) and delay-locked loops (DLLs) for high precision and low jitter
- 1.0 V and 1.05 V operating modes

4.3. Low-Power Features

- Low device static power
- Low inrush current
- · Low-power transceivers

4.4. Reliability Features

- FPGA configuration cells single-event upset (SEU) immune
- Built-in SECDED and memory interleaving on FPGA fabric LSRAMs

- · SECDED on all processor memories
- Error signals trapped and exported to the FPGA fabric
- · System controller suspend mode for safety-critical designs

4.5. Security Features

- Cryptography Research Incorporated (CRI)-patented differential power analysis (DPA) bitstream protection
- Integrated dual physically unclonable function (PUF)
- 56 Kbytes of secure, non-volatile memory (sNVM)
- Built-in tamper detectors and countermeasures
- \cdot Digest integrity check for FPGA, $\mu\text{PROM},$ sNVM, and eNVM

4.6. Software features

RCHD-PF is supported by the following software development environments:

- SoftConsole Embedded IDE
 - Eclipse IDE
 - Firmware catalog for device drivers
- Antmicro Renode™
 - Open Source PolarFire SoC System Modeling environment integrated with SoftConsole
- Libero[®] SoC PolarFire FPGA Toolset
 - Complete FPGA development environment
 - Includes Synplify Pro synthesis and Mentor ModelSim ME simulation

5. Block diagram

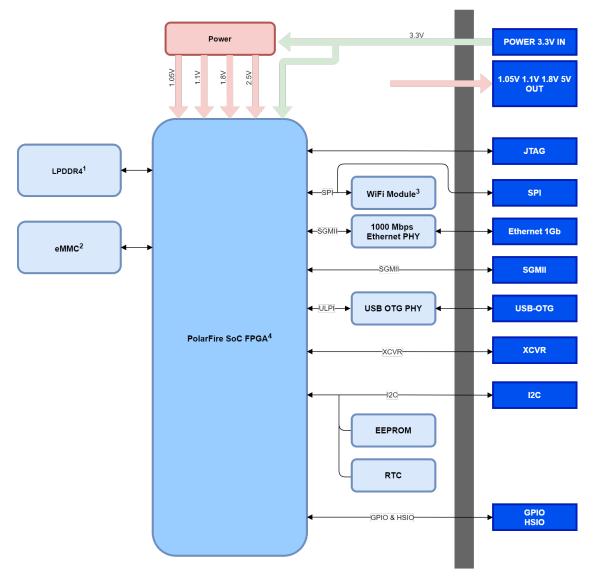


Fig. 5.1 Conclusive Engineering RCHD-PF SoM block diagram.

[1] Size and variant (LPDDR4) of RAM memory is determined by the SOM version.

[2] Size of EMMC memory is determined by the SOM version.

[3] WiFi module can be present or absent, determined by the SOM version. If absent, the MSS SPI interface is available on the header.

[4] Part number of PolarFire SoC FPGA is determined by the SOM version.

6. Main hardware components

This section summarizes the main hardware building blocks of the RCHD-PF.

6.1. PolarFire SoC FPGA

Fig. 6.1 PolarFire SoC on RCHD-PF.

For full specification of the PolarFire SoC please refer to subsection RISC-V Microprocessor Subsystem Features

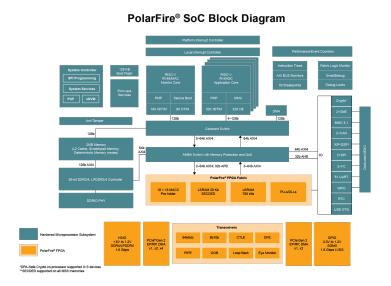


Fig. 6.2 PolarFire SoC block diagram.

6.2. LPDDR4 RAM

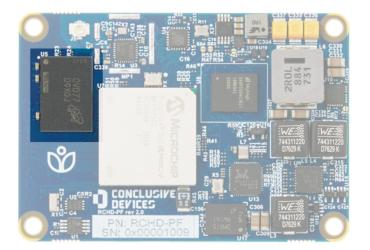


Fig. 6.3 RAM memory on RCHD-PF

The RCHD-PF is available with up to 4 GB of LPDDR4 memory operating at speeds up to 1600MTS.

6.3. eMMC

Fig. 6.4 eMMC on RCHD-PF.

RCHD-PF built-in eMMC memory, soldered directly on module. It is used for Flash Disk purposes, storage of Operating System run-time image, Boot-loader and application/user data storage. RCHD-PF can be ordered with different capacities of eMMC memory:

- 4 GB
- 16 GB
- 64 GB

6.4. NOR Flash

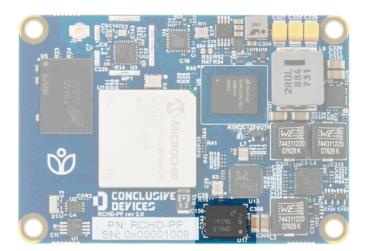


Fig. 6.5 NOR Flash on RCHD-PF

256 Mbit NOR Flash Memory for FPGA configuration.

6.5. USB OTG PHY

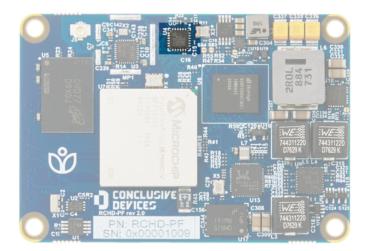


Fig. 6.6 USB OTG PHY on RCHD-PF

USB PHY based on USB3320 chip, a highly integrated full featured Hi-Speed USB 2.0 transceiver that utilizes Microchip's ULPI interface.

6.6. WiFi transceiver

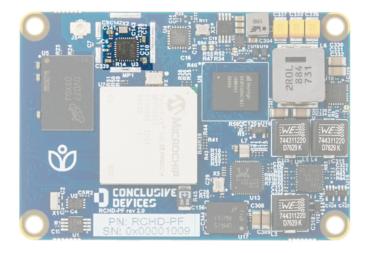


Fig. 6.7 WiFi transceiver on RCHD-PF

An ultra low power Wi-Fi WF200 chip from Silicon Labs. It's connected to the PolarFire SoC FPGA via an MSS SPI1 interface.

Key features:

- IEEE 802.11 b/g/n compliant
- TX power: +17 dBm (at pin)
- RX sensitivity: -96.7 dBm (at pin)
- \cdot Integrated antenna diversity support
- \cdot Ultra low power consumption
- \cdot Secure and signed software
- \cdot Encrypted host interface communication

6.7. Ethernet PHY

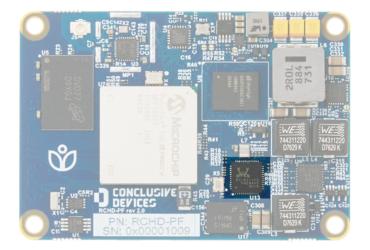


Fig. 6.8 Ethernet PHY on RCHD-PF

Low power 1GBit ethernet transciever based on Realtek RTL8211FS-CG PHY. It's connected to the PolarFire SoC FPGA via an SGMII interfaces.

6.8. EEPROM

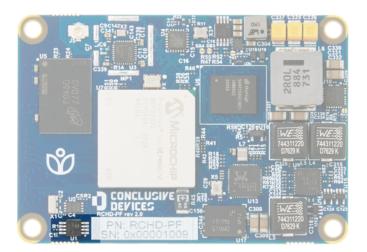


Fig. 6.9 EEPROM on RCHD-PF

A single 24AA32A EEPROM chip, 32 Kbit. EEPROM is accessible over I2C, with addresss 0x50. Its with Write Protect pin is available on the board-to-board connector J1. For exact pinouts, please refer to the External connectors section.

6.9. Real-time clock

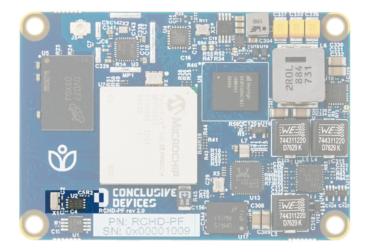


Fig. 6.10 RTC on RCHD-PF

A single MCP79412T RTC chip. RTC is accessible over I2C, with address 0x6F. Its VBAT power supply pin is available on the J3 connector. The VBAT pin is used only to supply power to the RTC. Its MFP

open-drain and alarm clockout pin is available on the J1 connector. For exact pinouts, please refer to the External connectors section.

6.10. Power supply section

RCHD-PF SoM has an extensive power supply section. Providing 3.3V to the SoM allows it to deliver voltages from 1.05V to 5V to the rest of the devices attached to it via the board-to-board connectors.

For more details, please refer to section Output Power Supplies.

7. External connectors

With the exception of the antenna connector, all RCHD-PF board connectivity happens through the 4 board-to-board connectors on the back of the SoM.

To break out the board connectivity into standardized connectors, please use the RCHD-PF-EVAL evaluation module, or connect directly to the pins on the reverse of the board using a compatible connector, as described in the board-to-board connector section below.

7.1. Wi-Fi Antenna Connector

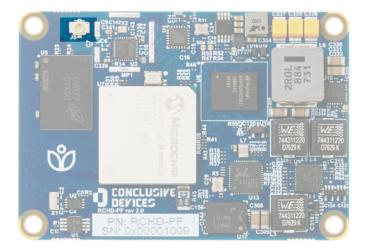


Fig. 7.1 Coaxial Wi-Fi connector

Orchid comes in variants with, or without the Wi-Fi module. Variants with the Wi-Fi module contain:

- One on-board U.FL Jack connector
- \cdot One compatible U.FL Jack connector antenna

To use a different antenna, please make sure it has a 50 Ohm characteristic impedance

7.2. Board-to-board Connectors

- The RCHD-PF exposes four 90-pin board-to-board connectors.
- The recommended mating connector is Hirose Electric Co Ltd PN: DF40C-90DS-0.4V(51).

7.2.1. Connector Numbering

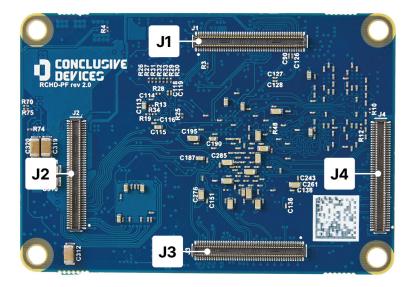


Fig. 7.2 Connector numbering on RCHD-PF (bottom view).

7.2.2. Connector J1 overview and pinouts

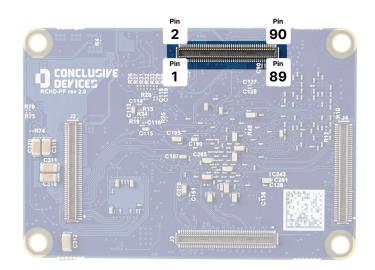


Fig. 7.3 Connector J1 on RCHD-PF (bottom view).

Connector J1 exposes the following connectivity of the RCHD-PF:

- Power supply pins
- JTAG
- USB
- I2C
- RTC
- MDIO
- UART
- Wifi RQ
- SPI

Table 7.1 SoM Board-to-Board Connector J1

PIN #	Pin name	Descripction	Ball
J1_1	JTAG_TRSTB	Input	G8
J1_2	VBUS	Input	
J1_3	JTAG_TMS	Input	F8
J1_4	USB_ID	Input	

		Description	Dell
PIN #	Pin name	Descripction	Ball
J1_5	JTAG_TDO	Output	E8
J1_6	USB_D_P	I/O	
J1_7	JTAG_TDI	Input	G9
J1_8	USB_D_N	Ι/Ο	
J1_9	JTAG_TCK	Input	E9
J1_10	EEPROM_WP	Input	
J1_11	DEVRST_N	Input	H7
J1_12	RTC_MFP	Output	
J1_13	MD_MDC	Output	D3
J1_14	SYS_I2C_SDA	Ι/Ο	B1
J1_15	MD_MDIO	1/0	C2
J1_16	SYS_I2C_SCL	Output	C1
J1_17	GPIO_1_22(UART0_TXD)	Output	E3
J1_18	VDD_5V	Power supply output	
J1_19	GPIO_1_21(UART0_RXD)	Input	А3
J1_20	VDD_5V	Power supply output	
J1_21	GND	Ground	
J1_22	VDD_5V	Power supply output	
J1_23	GND	Ground	
J1_24	VDD_5V	Power supply output	
J1_25	GND	Ground	
J1_26	VDD_5V	Power supply output	
J1_27	GND	Ground	

PIN #	Pin name	Descripction	Ball
J1_28	VDD_1V05	Power supply output	
J1_29	GND	Ground	
J1_30	VDD_1V05	Power supply output	
J1_31	GND	Ground	
J1_32	VDD_1V05	Power supply output	
J1_33	GND	Ground	
J1_34	VDD_1V05	Power supply output	
J1_35	GND	Ground	
J1_36	VDD_1V05	Power supply output	
J1_37	GND	Ground	
J1_38	VDD_1V8	Power supply output	
J1_39	GND	Ground	
J1_40	VDD_1V8	Power supply output	
J1_41	GND	Ground	
J1_42	VDD_1V8	Power supply output	
J1_43	GND	Ground	
J1_44	VDD_1V8	Power supply output	
J1_45	GND	Ground	
J1_46	VDD_1V8	Power supply output	
J1_47	GND	Passive	
J1_48	VDD_2V5	Ground	
J1_49	GND	Ground	
J1_50	VDD_2V5	Power supply output	

PIN #	Pin name	Descripction	Ball
J1_51	GND	Ground	
J1_52	VDD_2V5	Power supply output	
J1_53	GND	Ground	
J1_54	VDD_2V5	Power supply output	
J1_55	GPIO_1_17(SPI_SS)	Output	E4
J1_56	VDD_2V5	Power supply output	
J1_57	GPIO_1_20(WIFI_IRQ)	Input	B3
J1_58	VDD_1V1	Power supply output	
J1_59	GPIO_1_19(SPI_SI)	Input	A2
J1_60	VDD_1V1	Power supply output	
J1_61	GPIO_1_18(SPI_DO)	Output	B2
J1_62	VDD_1V1	Power supply output	
J1_63	GPIO_1_16(SPI_SCK)	Output	E5
J1_64	VDD_1V1	Power supply output	
J1_65	GND	Ground	
J1_66	VDD_1V1	Power supply output	
J1_67	GND	Ground	
J1_68	GND	Ground	
J1_69	GND	Ground	
J1_70	GND	Ground	
J1_71	GND	Ground	
J1_72	GND	Ground	
J1_73	GND	Ground	

PIN #	Pin name	Descripction	Ball
J1_74	GPIO169_P	1/0	C4
J1_75	GND	Ground	
J1_76	GPIO169_N	I/O	B4
J1_77	GND	Ground	
J1_78	GPIO170_P	I/O	C5
J1_79	SGMII_1_RX_P	Input	К6
J1_80	GPIO170_N	I/O	B5
J1_81	SGMII_1_RX_N	Input	К7
J1_82	GPIO172_P	I/O	A6
J1_83	GND	Ground	
J1_84	GPIO172_N	I/O	A5
J1_85	SGMII_1_TX_P	Output	M7
J1_86	GPIO173_P	I/O	A7
J1_87	SGMII_1_TX_N	Output	N8
J1_88	GPIO173_N	I/O	B7
J1_89	GND	Ground	
J1_90	GND	Ground	

7.2.3. Connector J2 overview and pinouts

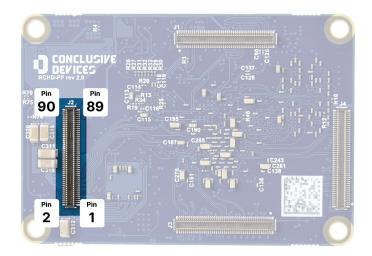


Fig. 7.4 Connector J2 on RCHD-PF (bottom view).

Connector J2 exposes the following connectivity of the RCHD-PF:

- Ethernet
- Power supply inputs
- General Purpose IO (GPIO)

Table 7.2 SoM Board-to-Board Connector J2

PIN #	Pin name	Descripction	Ball
J2_1	MDI_TRD3_P	1/0	
J2_2	MDI_TRD1_P	I/O	
J2_3	MDI_TRD3_N	1/0	
J2_4	MDI_TRD1_N	1/0	
J2_5	MDI_TRD4_P	1/0	
J2_6	MDI_TRD2_P	1/0	
J2_7	MDI_TRD4_N	1/0	
J2_8	MDI_TRD2_N	I/O	

PIN #	Pin name	Descripction	Ball
J2_9	GND	Ground	
J2_10	ETH_PHY_LED2	I/O	
J2_11	GND	Ground	
J2_12	ETH_PHY_LED1	I/O	
J2_13	GPIO_183_P	I/O	D12
J2_14	GND	Ground	
J2_15	GPIO_183_N	I/O	E11
J2_16	GND	Ground	
J2_17	GPIO_0_P	I/O	B12
J2_18	GND	Ground	
J2_19	GPIO_0_N	I/O	C12
J2_20	GND	Ground	
J2_21	GPIO_177_P	I/O	A10
J2_22	GND	Ground	
J2_23	GPIO_177_N	I/O	A11
J2_24	GND	Ground	
J2_25	GPIO_176_P	I/O	C10
J2_26	GND	Ground	
J2_27	GPIO_176_N	I/O	С9
J2_28	GND	Ground	
J2_29	GND	Ground	
J2_30	GND	Ground	
J2_31	GND	Ground	

PIN #	Pin name	Descripction	Ball
J2_32	GND	Ground	
J2_33	GND	Ground	
J2_34	GND	Ground	
J2_35	GND	Ground	
J2_36	GND	Ground	
J2_37	GND	Ground	
J2_38	GND	Ground	
J2_39	GND	Ground	
J2_40	GND	Ground	
J2_41	GND	Ground	
J2_42	GND	Ground	
J2_43	GND	Ground	
J2_44	GND	Ground	
J2_45	GND	Ground	
J2_46	GND	Ground	
J2_47	GND	Ground	
J2_48	GND	Ground	
J2_49	GND	Ground	
J2_50	GND	Ground	
J2_51	3V3	Power supply input	
J2_52	3V3	Power supply input	
J2_53	3V3	Power supply input	
J2_54	3V3	Power supply input	

PIN #	Pin name	Descripction	Ball
J2_55	3V3	Power supply input	
J2_56	3V3	Power supply input	
J2_57	3V3	Power supply input	
J2_58	3V3	Power supply input	
J2_59	3V3	Power supply input	
J2_60	3V3	Power supply input	
J2_61	3V3	Power supply input	
J2_62	3V3	Power supply input	
J2_63	3V3	Power supply input	
J2_64	3V3	Power supply input	
J2_65	3V3	Power supply input	
J2_66	3V3	Power supply input	
J2_67	3V3	Power supply input	
J2_68	3V3	Power supply input	
J2_69	3V3	Power supply input	
J2_70	3V3	Power supply input	
J2_71	3V3	Power supply input	
J2_72	3V3	Power supply input	
J2_73	3V3	Power supply input	
J2_74	3V3	Power supply input	
J2_75	3V3	Power supply input	
J2_76	3V3	Power supply input	
J2_77	3V3	Power supply input	

PIN #	Pin name	Descripction	Ball
J2_78	3V3	Power supply input	
J2_79	3V3	Power supply input	
J2_80	3V3	Power supply input	
J2_81	3V3	Power supply input	
J2_82	3V3	Power supply input	
J2_83	3V3	Power supply input	
J2_84	3V3	Power supply input	
J2_85	3V3	Power supply input	
J2_86	3V3	Power supply input	
J2_87	3V3	Power supply input	
J2_88	3V3	Power supply input	
J2_89	3V3	Power supply input	
J2_90	3V3	Power supply input	

7.2.4. Connector J3 overview and pinouts

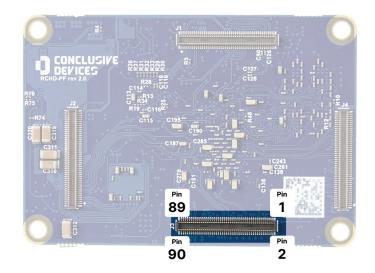


Fig. 7.5 Connector J3 on RCHD-PF (bottom view).

Connector J3 exposes the following connectivity of the RCHD-PF:

- Power supply inputs
- 4 x XCVR Bidirectional lanes (12.3 Gbit/s)
- General Purpose Input Output (GPIO)

Table 7.3 SoM Board-to-Board Connector J3

PIN #	Pin name	Descripction	Ball
J3_1	GND	Ground	
J3_2	VBAT	Power supply input	
J3_3	GND	Ground	
J3_4	GND	Ground	
J3_5	GND	Ground	
J3_6	GND	Ground	
J3_7	XCVR_0_TX3_N	Output	T21
J3_8	XCVR_0_RX3_N	Input	R19

PIN #	Pin name	Descripction	Ball
J3_9	XCVR_0_TX3_P	Output	T22
J3_10	XCVR_0_RX3_P	Input	R20
J3_11	GND	Ground	
J3_12	GND	Ground	
J3_13	XCVR_0_TX2_N	Output	P21
J3_14	XCVR_0_RX2_N	Input	M21
J3_15	XCVR_0_TX2_P	Output	P22
J3_16	XCVR_0_RX2_P	Input	M22
J3_17	GND	Ground	
J3_18	GND	Ground	
J3_19	XCVR_0A_REFCLK_N	Input	L20
J3_20	XCVR_0B_REFCLK_N	Input	N20
J3_21	XCVR_0A_REFCLK_P	Input	L19
J3_22	XCVR_0B_REFCLK_P	Input	N19
J3_23	GND	Ground	
J3_24	GND	Ground	
J3_25	XCVR_0C_REFCLK_N	Input	J20
J3_26	GND	Ground	
J3_27	XCVR_0C_REFCLK_P	Input	J19
J3_28	GND	Ground	
J3_29	GND	Ground	
J3_30	GND	Ground	
J3_31	XCVR_0_TX1_N	Output	H21

PIN #	Pin name	Descripction	Ball
J3_32	XCVR_0_RX1_N	Input	K21
J3_33	XCVR_0_TX1_P	Output	H22
J3_34	XCVR_0_RX1_P	Input	K22
J3_35	GND	Ground	
J3_36	GND	Ground	
J3_37	XCVR_0_TX0_N	Output	F21
J3_38	XCVR_0_RX0_N	Input	G19
J3_39	XCVR_0_TX0_P	Output	F22
J3_40	XCVR_0_RX0_P	Input	G20
J3_41	GND	Ground	
J3_42	GND	Ground	
J3_43	GPIO16_N	I/O	E18
J3_44	GPIO21_N	I/O	D20
J3_45	GPIO16_P	I/O	D18
J3_46	GPIO21_P	I/O	D21
J3_47	GPIO15_N	I/O	C17
J3_48	GPIO23_N	I/O	D22
J3_49	GPIO15_P	I/O	B17
J3_50	GPIO23_P	I/O	C22
J3_51	GPIO8_N	I/O	H17
J3_52	GPIO22_N	I/O	B22
J3_53	GPIO8_P	I/O	G17
J3_54	GPIO22_P	I/O	B21

PIN #	Pin name	Descripction	Ball
J3_55	GPIO11_N	1/0	F16
J3_56	GPIO18_N	I/O	C20
J3_57	GPIO11_P	1/0	F17
J3_58	GPIO18_P	I/O	C19
J3_59	GPIO14_N	I/O	D19
J3_60	GPIO4_N	I/O	C15
J3_61	GPIO14_P	I/O	E19
J3_62	GPIO4_P	I/O	C14
J3_63	GPIO185_N	I/O	H13
J3_64	GPIO12_N	I/O	D17
J3_65	GPIO185_P	I/O	G13
J3_66	GPIO12_P	I/O	C16
J3_67	GPIO7_N	I/O	H15
J3_68	GPIO9_N	I/O	E14
J3_69	GPIO7_P	I/O	G15
J3_70	GPIO9_P	I/O	E15
J3_71	GPIO6_N	I/O	G14
J3_72	GPIO20_N	I/O	A21
J3_73	GPIO6_P	I/O	F15
J3_74	GPIO20_P	I/O	A20
J3_75	GPIO10_N	I/O	D16
J3_76	GPIO19_N	I/O	B19
J3_77	GPIO10_P	1/0	E16

PIN #	Pin name	Descripction	Ball
J3_78	GPIO19_P	1/0	B20
J3_79	GPIO3_N	I/O	B14
J3_80	GPIO17_N	I/O	B18
J3_81	GPIO3_P	I/O	B13
J3_82	GPIO17_P	I/O	A18
J3_83	GPIO1_N	I/O	A12
J3_84	GPIO5_N	I/O	B15
J3_85	GPIO1_P	I/O	A13
J3_86	GPIO5_P	I/O	A15
J3_87	GPIO2_N	I/O	D14
J3_88	GPIO13_N	I/O	A17
J3_89	GPIO2_P	I/O	D13
J3_90	GPIO13_P	I/O	A16

7.2.5. Connector J4 overview and pinouts

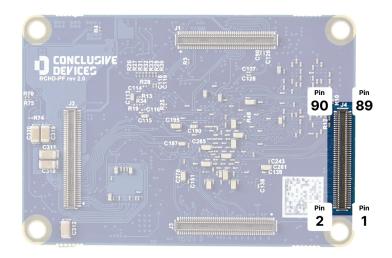


Fig. 7.6 Connector J4 on RCHD-PF (bottom view).

Connector J4 exposes the following connectivity of the RCHD-PF:

• High Speed Input Output (HSIO)

Table 74	SOM	Board-to-Board	Connector 14
10010 /11	00111	boara to boara	

PIN #	Pin name	Descripction	Ball
J4_1	HSIO68_P	I/O	W21
J4_2	HSIO74_P	I/O	U19
J4_3	HSIO68_N	I/O	V21
J4_4	HSIO74_N	1/0	U18
J4_5	GND	Ground	
J4_6	GND	Ground	
J4_7	HSIO72_P	I/O	V20
J4_8	HSIO66_P	I/O	W22
J4_9	HSIO72_N	I/O	V19

PIN #	Pin name	Descripction	Ball
J4_10	HSIO66_N	1/0	V22
J4_11	GND	Ground	
J4_12	GND	Ground	
J4_13	HSIO79_P	1/0	W19
J4_14	HSIO69_P	I/O	AA21
J4_15	HSIO79_N	I/O	W18
J4_16	HSIO69_N	I/O	AA22
J4_17	GND	Ground	
J4_18	GND	Ground	
J4_19	HSIO67_P	1/0	Y20
J4_20	HSIO80_P	I/O	Y19
J4_21	HSIO67_N	1/0	Y21
J4_22	HSIO80_N	I/O	Y18
J4_23	GND	Ground	
J4_24	GND	Ground	
J4_25	HSIO76_P	1/0	V17
J4_26	HSIO71_P	I/O	AB21
J4_27	HSIO76_N	1/0	V16
J4_28	HSIO71_N	I/O	AA20
J4_29	GND	Ground	
J4_30	GND	Ground	
J4_31	HSIO85_P	1/0	Y15
J4_32	HSIO83_P	I/O	W16

PIN #	Pin name	Descripction	Ball
J4_33	HSIO85_N	1/0	AA15
J4_34	HSIO83_N	I/O	W17
J4_35	GND	Ground	
J4_36	GND	Ground	
J4_37	HSIO75_P	I/O	T16
J4_38	HSIO73_P	I/O	T17
J4_39	HSIO75_N	I/O	R16
J4_40	HSIO73_N	I/O	U17
J4_41	GND	Ground	
J4_42	GND	Ground	
J4_43	HSIO70_P	I/O	AB19
J4_44	HSIO91_P	I/O	U15
J4_45	HSIO70_N	I/O	AB20
J4_46	HSIO91_N	I/O	T15
J4_47	GND	Ground	
J4_48	GND	Ground	
J4_49	HSIO78_P	I/O	AB18
J4_50	HSIO77_P	I/O	R15
J4_51	HSIO78_N	I/O	AA18
J4_52	HSIO77_N	I/O	R14
J4_53	GND	Ground	
J4_54	GND	Ground	
J4_55	HSIO81_P	1/0	AB17

PIN #	Pin name	Descripction	Ball
J4_56	HSIO90_P	I/O	V14
J4_57	HSIO81_N	1/0	AA17
J4_58	HSIO90_N	I/O	V15
J4_59	GND	Ground	
J4_60	GND	Ground	
J4_61	HSIO82_P	1/0	AA16
J4_62	HSIO93_P	I/O	U14
J4_63	HSIO82_N	1/0	Y16
J4_64	HSIO93_N	I/O	U13
J4_65	GND	Ground	
J4_66	GND	Ground	
J4_67	HSIO87_P	1/0	Y14
J4_68	HSIO95_P	I/O	R12
J4_69	HSIO87_N	1/0	W14
J4_70	HSIO95_N	I/O	T13
J4_71	GND	Ground	
J4_72	GND	Ground	
J4_73	HSIO84_P	1/0	AB14
J4_74	HSIO94_P	I/O	U12
J4_75	HSIO84_N	1/0	AB15
J4_76	HSIO94_N	I/O	T12
J4_77	GND	Ground	
J4_78	GND	Ground	

PIN #	Pin name	Descripction	Ball
J4_79	HSIO89_P	1/0	W13
J4_80	HSIO92_P	I/O	W12
J4_81	HSIO89_N	1/0	Y13
J4_82	HSIO92_N	I/O	V12
J4_83	GND	Ground	
J4_84	GND	Ground	
J4_85	HSIO86_P	1/0	AA13
J4_86	HSIO88_P	I/O	AA12
J4_87	HSIO86_N	1/0	AB13
J4_88	HSIO88_N	1/0	AB12
J4_89	GND	Ground	
J4_90	GND	Ground	

8. ElectricalSpecifications

8.1. Absolute Maximum Ratings

Table 8.1 Absolute maximum ratings				
Pin	Min	Max	Units	Comments
3V3	-0.5	3.6	V	Main power supply pins
VBUS	-0.3	5.5	V	
USB pins	-0.5	6	V	
MDI	-0.3	6.5	V	
GPIO	-0.5	3.8	V	Maximum DC input VIN voltage on GPIO
HSIO	-0.5	2.2	V	Maximum DC input VIN voltage on HSIO
XCVR	-0.5	1.26	V	Transceiver receiver absolute input voltage
XCVR CLK	-0.5	3.6	V	Transceiver reference clock absolute input voltage
XCVR CLK	-0.5	3.6	V	Transceiver reference clock absolute input voltage

Maximum power consumption of the RCHD-PF is 30W, without additional loads on the outgoing power supply pins.

8.2. Recommended Operating Conditions

Table 8.2 Recommended operating conditions

Pin	Min	Тур	Мах	Units	Comments
3V3	3.135	3.3	3.465	V	Main power supply pins
VBUS	0	5.0	5.5	V	
USB pins	0		3.6	V	

8.3. Output Power Supplies

RCHD-PF exposes five general purpose switching power supplies. Table below shows max current from each power rail.

Table 8.3 Output power supplies

Voltage (V)	Max available current (mA)	Pins
1.05	500	J1_28, J1_30, J1_32, J1_34, J1_36
1.1	100	J1_58, J1_60, J1_62, J1_64, J1_66
1.8	100	J1_38, J1_40, J1_42, J1_44, J1_46
2.5	100	J1_48, J1_50, J1_52, J1_54, J1_56
5	1500	J1_18, J1_20, J1_22, J1_24, J1_26

9. Environmental Specifications

Table 9.1	Environmental	Specifications
-----------	---------------	----------------

Parameter	Min	Max
Operating temperature range	-40°C	+85°C
Storage Temperature (eMMC flash memory is the limiting device)	-40°C	+85°C
Junction temperature SoC	-55° C	+135° C

10. SOM Dimensions

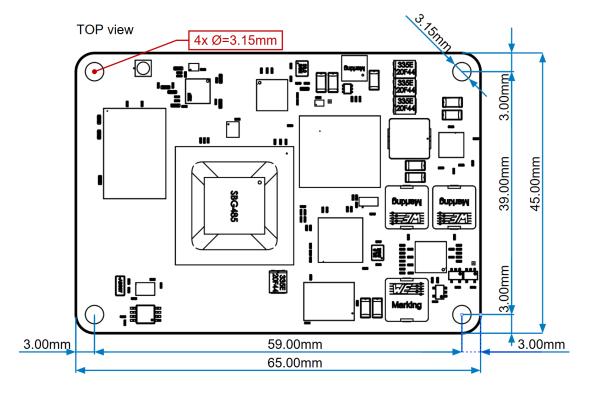


Fig. 10.1 RCHD-PF Top View Mechanics in millimeters

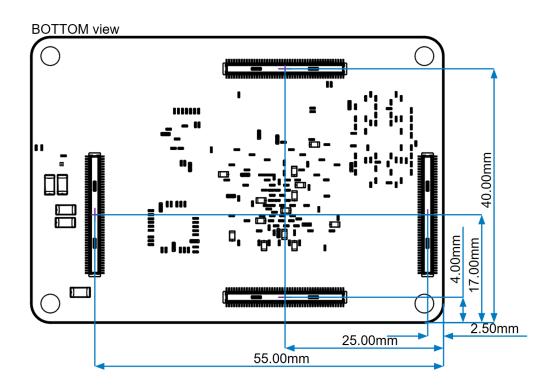


Fig. 10.2 RCHD-PF Bottom View Mechanics in millimeters

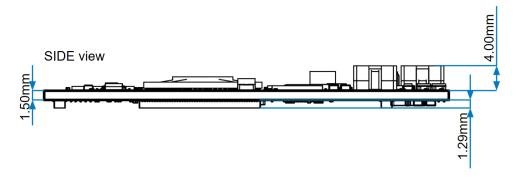


Fig. 10.3 RCHD-PF Side View Mechanics in millimeters

11. Boot process

11.1. Intro

RCHD-PF comes with a pre-installed HSS (Haart Software Services) on boot flash. The built-in MMC memory contains a pre-programmed Linux environment.



Fig. 11.1 Haart Software Services

11.1.1. Boot Prerequisites

- RCHD-PF with RCHD-PF-EVAL.
- HSS service on eNVM
- USB cable

11.1.2. Boot Instructions

- 1. Open a terminal on HSS Com Port, turn on the board and enter to HSS CLI by pressing any key during a 5 second timeout.
- 2. Run USB mass storage: USBDMSC

Fig. 11.2 USB host connection

For a new eMMC proceed with the following configuration steps. If eMMC is already configured, please skip to point 6.

- 1. Delete and format all partitions.
- 2. Create two partitions:
 - 10MB partition for BIOS BOOT (GUID: 21686148-6449-6E6F-744E-656564454649)
 - Allocate the remaining space as a Microsoft basic data (GUID: EBD0A0A2-B9E5-4433-87C0-68B6B72699C7)
- 3. Write a file with BIOS boot payload to first partition (for example using the 'dd' commandline program). In Conclusive repositories, the file is named payload.bin
- 4. On the second partition please write two files from the Conclusive RCHD-PF repositories: fitimage.fit and uEnv.txt
- 5. Exit HSS and boot linux.

12. Ordering information

RCHD-PF can be ordered directly from out website, at https://store.conclusive.tech

RCHD-PF comes in different configurations. The variable elements include the LPPDDR4, eMMC, SoC version, WiFi option and VCC core voltage. Available configurations are presented in the following graph:

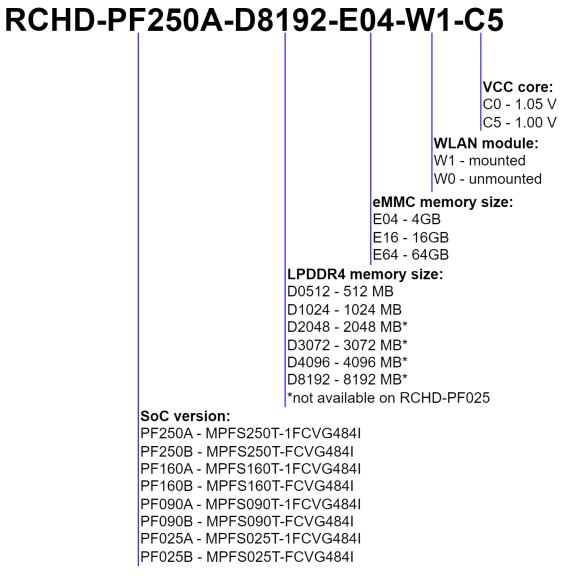


Fig. 12.1 Ordering information.

© Copyright 2024, Conclusive Engineering Sp. z o. o. . Build date: 2024-06-14 16:37:20. Release version: 4382827. Created using Sphinx 7.2.6.